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SUMMARY 
Finite element solution of the shallow water wave equations has found increasing use by researchers and 
practitioners in the modelling of oceans and coastal areas. Wave equation models, most of which use equal-order 
C? interpolants for both the velocity and the surface elevation, do not introduce spurious oscillation modes, hence 
avoiding the need for artificial or numerical damping. An important question for both primitive equation and wave 
equation models is the interpretation of boundary conditions. Analysis of the characteristics of the governing 
equations shows that for most geophysical flows a single condition at each boundary is sufficient, yet there is not a 
consensus in the literature as to what that boundary condition must be or how it should be implemented in a finite 
element code. Traditionally (partly because of limited data), surface elevation is specified at open ocean 
boundaries while the normal flux is specified as zero at land boundaries. In most finite element wave equation 
models both of these boundary conditions are implemented as essential conditions. Our recent work focuses on 
alternative ways to numerically implement normal flow boundary conditions with an eye towards improving the 
mass-conserving properties of wave equation models. A unique finite element formulation using generalized 
functions demonstrates that boundary conditions should be implemented by treating normal fluxes as natural 
conditions with the flux interpreted as external to the computational domain. Results from extensive numerical 
experiments show that the scheme does conserve mass for all parameter values. Furthermore, convergence studies 
demonstrate that the algorithm is consistent, as residual errors at the boundary diminish as the grid is refined. 
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BACKGROUND 

Shallow water equations are obtained by vertically averaging the time-averaged microscopic mass and 
momentum balances over the depth of the water column. Early finite element solutions of the shallow 
water equations were often plagued by spurious oscillations.' Various methods were introduced to 
eliminate the oscillations, but all included some type of artificial damping. Lynch and Gray2 and Gray3 
present the wave continuity equation as a means to avoid spurious oscillations without resorting to 
numerical or artificial damping of the solution. Since the inception of the wave continuity formulation 
in 1979, the original algorithm has been modified in a number of substantial ways: a numerical 
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parameter was introduced to provide a more general means of weighting the primitive continuity 
equation: viscous dissipation terms were inco rp~ra t ed~~~  and three-dimensional simulations were 
realized by resolving the velocity or stress profile in the ve~t ical .~- '~  The resulting algorithm has been 
extensively tested using analytical solutions and field data and is currently being used by researchers 
and practitioners to model the hydrodynamic behaviour of coastal and oceanic regions."-'5 

In the course of some of the applications it was discovered that when non-linear components of the 
solution are significant, the wave continuity equation in its original form does not conserve mass. Two 
methods of mitigating the errors are presented in Reference 16. In the fkst it is shown that if G, the 
numerical parameter in the generalized wave continuity equation, is increased so that its value is one or 
two orders of magnitude larger than the bottom fiction, then mass conservation is greatly improved. 
However, an upper bound on G exists, above which the solution becomes too primitive and spurious 
oscillations appear in the solution. Dispersion analysis can be used as a tool to a priori predict the 
maximum value of G. In lieu of dispersion analysis, experimental results suggest using a value of 
G / r ,  on the order of 1-10, where t is the non-linear bottom fiction. The second mitigation 
technique reformulates the convective term in the generalized wave continuity equation so that a 
consistency exists between the momentum and continuity equations (e.g. both equations cast the 
advective terms in non-conservative form). If both mitigating measures are used in conjunction, then 
global mass balance errors are eliminated while errors in local regions (even individual elements) are 
virtually non-existent except for regions near the open boundanes. One- and two-dimensional 
applications demonstrate the effectiveness of the procedure. However, the persistence of mass balance 
errors near open boundaries led to this study of the influence of boundary conditions on mass 
conservation and solution accuracy. 

The outline of the article is as follows. After presenting the governing equations and discretization 
technique, the history of boundary conditions, as implemented in finite element shallow water models, 
is examined. An alternative interpretation of flux terms that appear in boundary integrals is proposed; 
the interpretation is justified by deriving the finite element equations using generalized functions 
(multidimensional Heaviside step functions and Dirac delta functions). With this unique approach, 
boundary conditions fall out naturally during the derivation rather than being implemented in an ad 
hoc fashion as is done with many conventional  formulation^!*^"^-'^ Numerical experiments and 
convergence studies demonstrate the effectiveness of the algorithm. 

CONSERVATION EQUATIONS 

Primitive forms of the balance laws are obtained by vertical averaging of the time-averaged 
microscopic balance laws. With operator notation the primitive form of the continuity equation is 
presented as 

ac 
at 

L - + V . (Hv) = 0 .  

The conservative form of conservation of momentum is given by 

1 MCc-  + V -  ( H w )  + tHv + Hf x v + gHV[ - A - - V . ( H T )  = 0 
at P 

and the non-conservative form of conservation of momentum is given by 

1 
- (MC - vL) = 0.  H 

M 
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Substituting (1) and (2) into (3a) gives 

In operator form the generalized wave continuity (GWC) equation is 

aL 
at 

WG = - + GL - v - M~ = 0. 
Substituting (1) and (2) into (4a) gives 

1 
P 

al; 
at2 at 

WG f - + G- + (G - z)V.(Hv) - V *  V-(Hw) + Hf x v + gHV[ - A - - V  -(HT) 

- HV-VT = 0. 

The wave continuity equation, as it originally appeared in Reference 2, is obtained by setting G = z. 
Also note that the primitive continuity equation can be viewed as a limiting form of the generalized 
wave continuity equation by letting G + 00. 

DISCRETIZATION 

Equations (l), (2), (3b) and (4b) are discretized in space using a standard Galerkin finite element 
approximation with linear elements. Implicit time discretization of L and @ uses a three-time-level 
approximation centred at k. Time discretization for M and MC uses a lumped two-time-level 
approximation centred at k+ i; the advective terms are formulated explicitly, resulting in a system of 
linear algebraic equations. Exact quadrature rules are employed. The resulting discretized equations 
can be found in Reference 7. A sequential solution procedure is adopted where the continuity equation 
((1) or (4b)) is used to solve for elevations and the momentum equation ((2) or (3b)) is used to solve for 
the velocity field. 

BOUNDARY CONDITIONS 

The governing conservation equations represent a coupled hyperbolic system of partial differential 
equations that describe the propagation of long water waves in shallow water. As such, characteristic 
theory is an appropriate tool to study proper specification of boundary conditions. In particular, for the 
primitive conservation equations it has been shown that one condition on each physical boundary is 
required (in addition to initial conditions for the ‘time boundary’). Drolet and Gray” extended the 
analysis of characteristic planes to the wave continuity equation and determined that a single boundary 
condition is still sufficient for conditions normally encountered in geophysical simulations. 

Mathematically the conditions are specified as one of three types: Dirichlet (type I) in which the 
value of the dependent variable is specified, Neumann (type 11) in which the value of the flux is 
specified and Robin (type 111) which is a linear combination of the first two. In shallow water 
modelling, these types describe the physical situations of known elevation, known flux and stage 
discharge relations respectively (the latter is often referred to as a radiation boundary condition). This 
article focuses on the first two types of conditions. In finite element vernacular a Dirichlet condition 
means that the value of the dependent variable is known on the boundary; it is referred to as an 
essential condition. A specified flux condition enters the right-hand-side vector in the discrete set of 
equations and is referred to as a natural boundary condition. 
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For a single partial differential equation with one dependent variable, such as Laplace's equation or 
the diffusion equation, specified boundary conditions fall neatly into one of the above categories and 
implementation is unambiguous. Unfortunately, such is not the case for the coupled hyperbolic system 
at hand, for what may serve as an essential condition for the momentum equation may equally be 
interpreted as a natural condition for the continuity equation. This ambiguity has led to an inconsistent 
treatment of boundary condltions in the literature;'~4~7~'7-19~z1-z3 to date, there appears to be no 
consensus on the 'best' way to implement the conditions. Complicating the matter is the fact that data 
often dictate what information is available at the boundary. For example, elevation data, either from 
global tidal models or from field measurements, are more reliable and more prevalent than are velocity 
data. The end result is that the researcher is often faced with the task of choosing one interpretation 
over the other, which fiequently is tantamount to choosing which boundary equation to discard. 

Lynch24 was one of the first to study the affect of boundary conditions on mass conservation in the 
context of the wave continuity algorithm. Using well-known properties of linear basis functions, i.e. 
the sum of the functions over all elements is equal to one and the sum of the gradient of the basis 
fictions over all elements is zero, he demonstrates that all terms of the continuity equation must be 
retained in order to maintain global conservation of mass, regardless of the nature of the boundary 
data. He refers to this interpretation of the boundary conditions as mass conservative boundary 
conditions. However, several open issues remain. For example, it is not clear how momentum 
conservation is affected by this interpretation, an equally important consideration. 

Guided by the work of Lynchz4 and ~ t h e r s , ~ ~ - ~ ~  we hypothesize that when Green's theorem is 
applied to the flux term during finite element formulation of the continuity equation, the flux in the 
boundary integral should be interpreted as external to the computational domain. Thus it becomes an 
additional unknown in the discrete set of equations. In addition to guaranteeing global mass balance, 
this formulation balances the number of equations plus boundary conditions with the number of 
unknowns; hence neither data nor boundary equations are discarded. 

DERIVATION 

For clarity, consider just the flux term V * Q, where Q = Hv, in equation (1) or (4b) during the finite 
element formulation. In a conventional finite element formulation one discretizes the domain of 
interest SZ using appropriate elements and applies Green's theorem to the flux term to yield 

where &I is the boundary of the discretized domain. In ( 5 )  it is not clear how to interpret the flux Q 
that appears in the boundary integral, especially if one uses equal-order (? interpolants, i.e. is Q 
internal or external to the domain? Also, if it is internal, how does this value relate to the momentum 
equation? 

Boundaries, and hence boundary conditions, arise from the artificial restriction of a global problem 
to a localized study region; the boundary condltions link the characteristics of the local problem to the 
outside world. Our philosophy is that to properly interpret and implement boundary conditions, the 
boundaries should be kept internal to the domain during the finite element formulation so that the 
proper link to the outside world is maintained. This approach is realized by fist discretizing the entire 
global region and then using generalized hc t ions  to delineate local study regions with their 
corresponding boundaries. It is during the problem formulation that the boundary conditions develop 
naturally in a clear and unambiguous manner. The methodology was first presented by Gray and 
Celia" for an elliptic problem; here we adapt the procedure to hyperbolic problems. 
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Consider again just the flux term fiom the continuity equation (minus any coefficients) so that the 
equation to be discretized is given by 

V - Q  = 0. (6) 
The first step is to discretize all space R, into N triangular elements (the element shape is arbitrary). 
Discretizing all space with a finite number of elements presents no conceptual problem if one 
visualizes all space as the spherical earth rather than an infinite plane. Next approximate Q with 
(summation implied) 

Q X QeYey (7 1 
where Q, is a piecewise polynomial approximation of Q inside the domain of interest (Q), ye is a 
generalized Heaviside step function that has a value of one in element e and zero outside, and the 
summation is over all elements in 0,. It is important to recognize that ye in (7) is not an interpolating 
polynomial and Q, is not a nodal coefficient. Outside of fi the choice of approximating functions is 
arbitrary; a reasonable choice is to select Q, so that it satisfies the governing differential equation 
exactly. 

A finite element approximation can be obtained by weighting (6) with a set of polynomial weighting 
functions, pi and integrating the result over all space. The only requirement we impose on cpi is that it 
have a value of one at node i and zero at all other nodes. Equation (6) then becomes (summation 
implied) 

V-(Q,y,)rp, & = 0 for i = 1 , .  . . , N. 

Next expand the spatial derivative in (8) to obtain (summation implied) 

(8) 
'nm 

I,, Y,v - Q,V~ d~ + I, Q, - v Y , ~ ,  d~ = o for i = 1, . . . , N .  (9) 

Since y e  = 1 inside an element, the value of the first integral is not affected by ye ,  so it will be dropped 
from this integrand in ensuing equations. 

In Reference 31 it is shown that the gradient of the generalized Heaviside step function is a 
multidimensional Dirac function, namely 

Vy, = -n,6(x - x,), 

where x, is the locus of point forming the boundary of element e and n, is a unit outward normal from 
element e. Integral properties of (10) are analogous to the familiar one-dimensional Dirac ii~nction,~' 
i.e. 

f-Vy, dR = - n;f d r .  I,. I,. 
Now, to interpret equation (9), consider two separate regions of the global domain R: (i) i is a node 

inside R; (ii) i is a node on the boundary of R. Recall that outside of R, Q has been chosen to satisfy 
the governing equation, so no solution is required. 

Region (i): i inside R 

Using (1 l), one can write (9) as 
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where Re is an element in R and the sum is over all elements in R. If we require cpi and Q, to be 
continuous within an element, then the divergence theorem can be applied to the second term to yield 

and the chain rule can be used to express (13) as 

Thus, on the interior of the computational domain, (9) reduces to the familiar finite element result. 

Region (ii): i on the boundary of R 

Consider the expanded view of the domain R, as shown in Figure 1 that contains a portion of the 
boundary which divides the computational domain 52 from the rest of 0,. Define E to be all 
elements that have node i in common-the sum of the shaded regions in Figure 1. Use (1 1) and the fact 
that cpi is zero outside the shaded region to write (9) as 

where RE is an element in the shaded region E. 
Define A to be those elements of E in the region of interest R and B to be those elements of E 

outside. In Figure 1, A is the lighter shaded region and B is the darker shaded region. Then (1 5) can be 
broken into the two sums 

Figure 1. Expanded view of domain R, showing boundary aR between the local region of interest (right of boundaty) and 
remainder of domain (left of boundary). Region A is lighter and region B darker shaded region 
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Since B elements are external to the domain, the first integral in the B summation is zero (by our 
assumption that Q, exactly satisfies (6) outside of R). Apply the divergence theorem to the second 
integral in the A summation and then use the chain rule to combine it with the first integral to obtain 

Note that nB = -nA; also, for the case considered here (i on the boundary of a), qi is non-zero only on 
the boundary between A and B elements, i.e. on the boundary of the computational domain, asZ. Thus 
(1 7) may be written as 

In the second term, QB is external to the domain, so its value can be chosen to produce the best 
solution in R. An obvious choice is to select QB such that nA - QB = 0 on land boundaries and nA - QB is 
equal to the normal flux on open boundaries. 

If one compares the result of the finite element formulation using generalized functions (equation 
(18)) with the results of a conventional formulation (equation (5 ) ) ,  it can be seen that the former leads 
to a result with a precise interpretation; namely, the boundary flux term that arises from application of 
Green’s theorem is external to the computational domain. 

In deriving this result, no continuity requirements between the polynomial approximation of Q and 
the external flux value have been imposed. Thus there could conceivably be a discontinuity in flux at 
the boundary. Since flux in geophysical flows is continuous, such a discontinuity represents an error in 
the approximate (discrete) solution. However, errors are inherent in any numerical model. 
Conventional finite element formulations generally enforce continuity of flux at the boundaries by 
discarding an equation. The price one pays, in terms of approximating errors, for preserving flux 
continuity is mass balance errors. On the other hand, by treating boundary flux as external to the 
domain, no discrete equations are discarded and mass is conserved (demonstrated in the next section). 
Our opinion is that conserving mass locally and globally takes priority over flux continuity at the 
boundary, especially when coupling the hydrodynamic model to transport simulators. Furthermore, as 
will be shown in a following section, the flux at the boundary does become continuous as the grid is 
refined. Paralleling Gresho and Lee’s theme of ‘Don’t suppress the wiggles-they’re telling you 
~ometh ing’ ,~~ this residual error on the boundary can be used to indicate regions where the grid should 
be refined. 

Finally, we note an additional feature of the proposed interpretation: boundary conditions in finite 
element codes are simpler to implement. Consider specifying a normal flux boundary condition in a 
conventional formulation. For interpolants this flux is a nodal flux, and it is enforced as an essential 
condition. This requires that the momentum equation on the boundary be rotated to a normal- 
tangential co-ordinate system so that the specified condition can be enforced on only the normal 
component of velocity. Afterwards the solution must be rotated back to Cartesian (or spherical) co- 
ordinates. Keeping track of the orientation of unit normal vectors on irregular boundaries (those 
normally encountered in geophysical simulations) requires non-trivial coding. Furthermore, ‘special 
edges’, such as sharp comers on the boundary, require special processing of the data. In contrast, the 
proposed implementation, with normal flux values interpreted as external to the computational domain, 
obviates the need to rotate nodal momentum equations. Also, special edges require no special 
treatment. 
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NUMERICAL VERIFICATION 

The above formulation is tested in a series of one-dimensional experiments with results compared to a 
conventional formulation. A shallow onedimensional east-west channel is used for the model problem 
so that significant non-linear components are generated, a situation that can give rise to mass balance 
errors.16 Conditions for the problem are 

channel co-ordinates 
channel depth 
eddy viscosity E 

Ar 
Ax 

boundary conditions 
4A,/Ax 

initial conditions 
bottom friction z 

O < x G 5 O I a n  
5 m  
0.0 m2 s - '  
adjusted to maintain a Courant number < 0.25 
2.5 km unless noted otherwise 
125 unless noted otherwise 
((0, r )  = 1.0 sin(2nr/12.42 h) m 
u(50, f )=O.O m s-' 

0.0001 s- '  (constant). 
cold start: ((x, O)=U(X ,  O ) = O - O  

The x-axis is defined positive to the east. The boundary conditions describe a channel with a land 
boundary at x =  50 Ian being forced by an M2 tide with 1 m amplitude at x = O  km. Fine spatial 
resolution is used to minimize truncation error. 
Mass conservation is checked globally and locally by comparing the time series of mass 

accumulation with cumulative net flux for the region of interest. Details of the algorithm are presented 
in Reference 16. Non-linear constituents are evaluated by decomposing the full solution into the M2 
constituent, its steady state constituent and the & and M6 overtides using a least squares harmonic 
analysis.33s34 Results are compared against a fine grid solution (320 elements, Ax =0.156 Ian, 

Recall that conventional formulation of the boundary conditions treats all boundary information as 
essential conditions. Thus specified elevation results in a reduced matrix for the continuity equation 
and specified flux results in a reduced matrix for the momentum solution. This interpretation leads to 
gross mass balance errors; Figure 2 shows simulation results for the model problem using the 
conventional formulation. For perfect mass balance the two curves should overlay one another. (The 

AMl/Ax = 2000). 

2 

0 

Tim (hours fmm san) 

Figure 2. Global mass balance check of GWC formulation (G = T; advective terms inconsistent) for model problem, conventional 
interpretation of boundary conditions. Full curve is accumulation; broken curve is net flux 
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mitigating procedures discussed earlierI6 are not implemented here so as to isolate the effect of 
boundary conditions; thus GI7 is set to one and the advective terms are treated inconsistently.) 

Under the proposed interpretation, state variables that appear in boundary integrals must be 
interpreted as external to the domain. For the onedimensional finite element formulation of the 
primitive continuity equation (l), Green’s theorem is applied to the flux term so that the weak form is 
given by 

where nodes are numbered from 0 to N. 
Under the proposed interpretation the boundary flux term Q = H u  is viewed as external to the 

domain, i.e. an unknown quantity. Hence the f designation in the limits of integration. In this way the 
number of equations plus boundary conditions is equal to the number of unknowns so that all 
information is used. No equations are discarded. Consequently, at the west boundary (i = 0)  where [ is 
specified, elevation is known so that (19) is solved for external flux. That is, at i=O equation (19) 
becomes 

The momentum equation is then used to solve for velocity at the west boundary, UO+. For comparison, 
consider implementation of this boundary condition in a conventional manner: the i = 0 equation is 
discarded from the set of discrete continuity equations, while the momentum equation is used to solve 
for the velocity at node 0. 

At the east boundary ( i = N )  the external flux is known so it enters the finite element formulation 
given in (19) naturally and the equation is solved for the unknown elevation. Thus at i = N  equation 
(1 9) becomes 

The momentum equation is then used to solve for the unknown velocity at the east boundary, uN-. 
Recall that with this interpretation there may be a flux discontinuity at the boundary. For comparison, 
consider implementation of this boundary condition in a conventional manner: the specified flux enters 
an equation similar to (21) naturally, while the i=N equation is discarded from the set of discrete 
momentum equations. 

When this external flux interpretation is applied to the GWC algorithm (the treatment of the flux 
term in the weak form of the GWC equation (4b) is analogous to its treatment in the primitive 
continuity equation as discussed above), simulation of the model problem results in no global mass 
balance error as shown in Figure 3 regardless of the value of the G parameter or the treatment of the 
advective terms. 

To rigorously test the proposed algorithm, we set up the experimental matrix shown in Table I and 
computed three different error measures for each experiment: global mass balance error, local mass 
balance error and e m r  in the generation of non-linear constituents. Results are summarized in Table 11 
with ratings based on quantitative error measures. Also included in the table are results from 
experiments with a code using conventional treatment of the boundary conditions; these have been 
reported previously in Reference 16 but are included here for completeness. 

As can be seen from the experimental results in Table 11, the proposed algorithm conserves mass 
globally for all parameter values. However, local mass balance errors exist unless one formulates the 
advective terms consistently or uses a value of G two orders of magnitude larger than the bottom 
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Figure 3.  Global mass balance check of GWC formulation (G= T; advective terms inconsistent) for model problem, proposed 
interpretation of boundary conditions. Full curve is accumulation; broken curve is net flux 

friction z. Under either condition, local mass balance errors are minimal at the element level and they 
are virtually non-existent for local mass balance checks over two or more elements. In contrast, with 
conventional implementation of boundary conditions, local mass balance errors exist near the open 
ocean boundary for most parameter values. Constituent error between the two formulations behaves 
nearly identically; errors are large when G/T = 1 and the advective terms are inconsistent; errors are 
reduced by treating the advective terms consistently; and for both of these situations the errors are 
virtually eliminated by increasing G/T to 100. 

In summary, the results of the numerical experiments show that the proposed algorithm leads to less 
overall error than the corresponding conventional algorithm. Also, with the proposed algorithm, better 
results can be obtained for lower values of G, which is desirable for two-dimensional applications in 
order to avoid spurious oscillation modes. However, regardless of the value of G or the method used to 
implement boundary conditions, the advective terms should be formulated consistently in order to 
minimize mass balance error and to stabilize the simulator in highly non-linear applications. 

In addition to the experiments shown in Table I, a large number of additional one-dimensional 
experiments were conducted, many of which looked at boundary conditions in mixed finite element 
formulations. Results parallel those presented herein; namely, solutions are more accurate and 
consistent using the proposed interpretation. This corroborates the findings of Sigurdsson2’ in his work 
with mixed finite element solution of the shallow water equations. One particularly interesting result is 

Table I. Experimental matrix 

Experiment 
number 

Boundary 
conditions 

Advective Glr Number of 
terms elements 

1 Conventional Not consistent I .o 20 
2 Conventional Not consistent 100.0 20 
3 Conventional Consistent 1 .o 20 
4 Conventional Consistent 100.0 20 
5 Proposed Not consistent 1 .o 20 
6 Proposed Not consistent 100.0 20 
I Proposed Consistent 1 .o 20 
8 Proposed Consistent 100.0 20 
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Table 11. Quantitative results of numerical experiments 

Local mass balance 

Experiment Global mass Ocean Land Constituent 
number balance boundary Interior boundary error 

1 
2 *** *** **** ***** **** 
3 *** ** ***** **** *** 

* * *** **** * 

4 
5 
6 

**** 
***** 
***** 

**** 
* 
**** 

***** ***** 
*** **** 
**** **** 

***** 
* 
**** 

***** **** ***** **** *** 7 
8 ***** **** **** **** ***** 

Mass balance error (local and global) is computed as the mean of the absolute value of the difference between the time series of 
the net flux and the time series of accumulation over the last 4 days of the simulation. 
Constituent error is computed as the mean of the absolute value of the difference between the amplitude of the steady state, M2, 
& and M6 components for each station and a fine grid solution (320 elements, Ax = 0,156 Ian, &,,/Ax = 2000). 

Quantitative error ratings Global error (m') ~ o c a ~  error (m3) Constituent error (m) 
E < 04070 E<0.0010 E < 0.001 1 

0.0070 Q E < 0.015 0.0010 Q E<0.0050 0.0011 < E<0.0050 
0.015 Q E<0.050  04050 Q E<0.010 04050 6 E<O.010 
0.050 < Et0.10 0.010 Q E<O.10 0.010 < E<O.050 

E 20.10 E>,0.010 E 2 0.050 

***I* 

**** 
*** 
** 
* 

that if Green's theorem is applied to the finite amplitude term gVc in the momentum equation, then this 
boundary term must be interpreted as external to the domain in order to realize stable, accurate, mass 
conservative results. Alternative interpretations (for example, treating specified flux as both essential in 
the momentum balance and natural in the continuity equation) that were tested led to unstable 
algorithms. 

CONVERGENCE STUDIES 

When C? polynomials are used as the approximating function in (7), a discontinuity may exist between 
the external flux computed from the boundary integral and the flux computed using nodal velocity 
times the fluid depth (the nodal flux). As discussed earlier, this discontinuity can be viewed as a 
measure of the approximation error in the discrete equations. For a consistent algorithm the error 
should approach zero as the grid is refined. Accordingly, we undertook a convergence study to examine 
the discontinuity error at the boundaries. Errors were evaluated by comparing the time series response 
for the external flux with the time series of flux computed from the nodal velocity and nodal water 
depth. As the grid is refined, the difference between the two time series curves should approach zero. 
Results shown in Figures 4 and 5 demonstrate that the time series do converge as the grid is refined at 
both the open boundary and the land boundary. 

An alternative way to measure convergence at the boundary is to plot error versus grid spacing on 
log-log paper. For a convergent scheme the error should approach zero as the grid size goes to zero, 
and the rate of convergence can be found from the slope of the curve. Figure 6 shows the results of this 
convergence test for both the open ocean boundary and the land boundary where the error was 
computed as the average of the absolute difference between external flux and nodal flux, i.e. 
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Figure 5. Results of grid convergence studies showing time series response of fluxes at land boundary for various levels of 
discretization. Full curve is external flux; broken curve is nodal flux 
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Figure 6. Rate of convergence at both boundaries. Error is average value of difference between nodal flux and external flux (see 
equation (22)) 

where NT is the number of time steps. As can be seen, the scheme is convergent with a ht-order rate 
of convergence. In contrast, the mass balance errors that arise with some conventional formulationsI6 
do not diminish as the grid is refined, an indication of an inconsistent algorithm. 

CONCLUSIONS 

Shallow water models based on a finite element solution of the wave continuity equation have evolved 
as powerful tools for simulating the hydrodynamic behaviour of coastal and oceanic waters. However, 
in some applications, particularly when the non-linear terms are significant, the algorithm may be 
susceptible to mass balance errors and errors in the generation of non-linear constituents. Herein it is 
proposed that one source of the error is the treatment of boundary conditions. In particular, a unique 
derivation using generalized functions shows that the state variable in boundary integrals (that results 
from application of Green’s theorem to the weighted residual form of the governing equations) should 
be interpreted as external to the computational domain. This interpretation can be viewed as the finite 
element counterpart of imaginary nodes (nodes outside the boundary) used in finite difference 
algorithms. Numerical experiments demonstrate that this interpretation does improve the accuracy and 
consistency of the simulator. 
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APPENDIX: NOMENCLATURE 

A 
G 
H 
L length 
L 
M mass 
M 
M" 
Q 
T time 
T macroscopic stress tensor ( M / L p )  
v volume ( L ~  

e 
f Coriolis parameter 
g lgl ( L P )  
g gravity vector (L/? ) 
h bathymetry (L) 
i spatial index 
k temporal index 
n unit outward normal vector 
t time 
u 
v 

stress at water surface (L'/P) 
numerical parameter in generalized wave continuity equation ( l /T)  
total fluid depth, h + ( (L) 

symbol for primitive continuity equation 

symbol for primitive momentum equation, non-conservative form 
symbol for primitive momentum equation, conservative form 
volumetric flux, equal to Hv for shallow water flows ( L 2 / T )  

symbol for generalized wave continuity equation 
element in finite element mesh 

scalar fluid velocity, x-component if 2D or 3D problem ( L I T )  
depth-averaged velocity of fluid ( L I T )  

Greek Letters 

R 
E eddy viscosity ( L 2 / T )  
C 
A wavelength (L)  
p density (M/V) 
T bottom friction (1 /T) 
cp 

spatial domain (R" for n = 1, 2) 

elevation of water surface above datum (L) 

basis function in finite element formulations 

Special Symbols and Operators 

V 
V divergence operator (1 /L) 
X2 boundary of R 

nabla (grad) operator (1 /L) 
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